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Non-Euclidean Geometry

In his classic “the Elements”, Euclid states five postulates describing the foun-
dational assumptions of planar and spatial geometry. Euclid’s fifth axiom, also
known as the “parallel” postulate, states the following: Given a line and a point
not on it, exactly one line parallel to the given line can be drawn through the
point.

For more than two millennia mathematicians have believed this fifth postulate
is implied by the first four. It was only in the first half of the nineteenth century
that new geometric models were discovered, proving the independence of said
postulate. These “non-Euclidean” geometries are divided into two fundamental
categories:

Elliptic Geometry

Elliptic or spherical, geometry may be mod-
eled on the surface of a sphere in 3D-space.
In this model “great circles” play the role of
straight lines. Note that in this model, given
a line and a point not on it, there are no lines
parallel to the given line going through the
point (parallels are lines which may be con-
tinued indefinitely and never meet).

Hyperbolic Geometry

Hyperbolic geometrymaybemodeled in the
interior of a 2D disc. In this model the role of
straight lines is played by circular arcs per-
pendicular to the disc’s boundary. Note that
given a line and a point not on it, there ex-
ist in this model infinitelymany lines parallel
to the given line and going through the given
point.

Geodesics and Horocycles

A geodesic between two points on a surface is the path of minimal distance be-
tween them. Geodesics are the “straight lines” on curved surfaces. In the hyper-
bolic plain H2, given a point p and a direction v⃗ there is a unique geodesic passing
through the point p in the direction v⃗. One can parameterize this geodesic, along
with its tangent vectors, as at(p, v⃗), where a0(p, v⃗) = (p, v⃗).

The stable horocycle based at x = (p, v⃗) is the set

Ux = {y : d(atx, aty) → 0, as t → ∞}.

Horocycles can be parameterized as well by hs(p, v⃗), where
h0(p, v⃗) = (p, v⃗). In the hyperbolic disc model horocycles are
circles tangent to the boundary of the disc.

Ergodic Theory

Ergodic theory is the study of long-term statistical behavior of dynam-
ical systems — phase spaces with a notion of time evolution.
A flow on a space X is a nice family of functions {φt : X → X} satisfying

φt+s(x) = φt(φs(x))
for all x in X and real numbers s and t. We may think of φt as time evolution
maps where φt(x) is the state of the system at time t after beginning at the initial
condition x. An interesting example is the geodesic flow on a hyperbolic surface
— X is the phase space of points and directions (p, v⃗) on some surface S where
φt(p, v⃗) denotes the location and direction at time t of a free flying particle with
initial conditions (p, v⃗).

In many cases there exists a notion of a probabilitymeasure defined on the space
X allowing to drawpoints at random (e.g. a probability proportional to the volume
measure on a surface).

A typical question in ergodic theory is the following:

Given a set E in X , what is the frequency of visits to E of a random trajectory?
I.e, given a random x and large T , what is the proportion

1
T

∣∣{0 ≤ t ≤ T : φt(x) is in E}
∣∣?

A probability measure on X is called φ-invariant if for any nice subset F of X

P[x is in F ] = P[x is in φt(F )] for any t.

A probability measure is called ergodic if for every nice subset F of X the
condition that all trajectories beginning in F will forever stay in F implies that
P[x is in F ] = 0 or 1.

We may now state the fundamental theorem of ergodic theory due to Birkhoff,
giving an answer to the question above:

The Pointwise Ergodic Theorem (Birkhoff)

Let P be an invariant and ergodic probability measure on the space X with re-
spect to the flow {φt}. For any nice subset E of X

lim
T→∞

1
T

∣∣{0 ≤ t ≤ T : φt(y) is in E}
∣∣ = P[x is in E]

for all y of X outside a set of probability 0.

Heuristically, the ergodic theoremstates that timeaveragesandspaceaverages
are equal — sampling a single trajectory over a large period of time is the same
as sampling over the whole space.

Infinite Measures and the Ratio Ergodic Theorem

In general, a measurable space may support many different, finite and infinite, in-
variant and ergodicmeasuresw.r.t a flow {φt}. While very useful for finitemeasures,
the pointwise ergodic theorem applied to an infinite φ-invariant and ergodic mea-
sure µ, only implies that

∫ T
0 χE(φt(x))dt = o(T ) for µ-a.e. x ∈ X .

A substitute for Birkhoff’s theorem in the infinite measure context is the following:
The Ratio Ergodic Theorem (Hopf)

Let µ be a conservative, σ-finite, invariant and ergodicmeasure on the spaceX with
respect to the flow {φt}. For any measurable subsets E and F of X

lim
T→∞

∫ T
0 χE(φt(x))dt∫ T
0 χF (φt(x))dt

= µ(E)
µ(F )

for µ-a.e. x, whenever µ(E), µ(F ) < ∞ and µ(F ) > 0.

Hence classifying the invariant and ergodic measures (finite or infinite) is closely
related to understanding the possible statistical distributions of φ-orbits.

Measure Classification for Horocycle Flows

Classification of horocycle invariant and ergodic locally finite measures on hyper-
bolic surfaces:

Finite Measures

Compact Surface - Unique
ergodicity (Furstenberg)

Finite volume - Unique non-periodic
measure (Dani)

Infinite volume - only periodic
measures (Ratner)

From Sarig’s Survey paper ”Unique Ergodicity for Infinite Measures”

Infinite Measures

Geometrically finite Surface -
Unique recurrent measure (Burger,
Roblin)

Abelian cover of compact surface -
Uncountable family of ergodic
recurrent measures
(Babillot-Ledrappier)

Regular covers of finite volume
surface - All invariant measures are
quasi-invariant w.r.t. the geodesic
flow (Ledrappier-Sarig)

Weakly tame surface - All invariant
measures are quasi-invariant w.r.t.
the geodesic flow (Sarig)

Horospherical Flows on Geometrically infinite Manifolds

Denote by G = SO+(d, 1) the group of orientation preserving isometries of hyper-
bolic d-space. Let A = {at}t∈R be the Cartan subgroup of G and let U be the unsta-
ble horospherical subgroup with respect to a1.

Theorem (L - Lindenstrauss)
Let Γ < G be any discrete subgroup. Let µ be a U-invariant and ergodic Radon
measure on G/Γ. If the set

∞⋂
n=1

⋃
t>n

atgΓg−1at

contains aZariski dense subgroup forµ-a.e. gΓ, thenµ is quasi-invariantw.r.tNG(U).
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